0%

java-JVM

一、JVM的基本介绍

原文地址:https://juejin.im/post/5e1505d0f265da5d5d744050#heading-28

JVM其实就类似于一台小电脑运行在windows或者linux这些操作系统环境下即可。它直接和操作系统进行交互,与硬件不直接交互,可操作系统可以帮我们完成和硬件进行交互的工作。


1.1 Java文件是如何运行的?

类加载器

如果 JVM 想要执行这个 .class 文件,我们需要将其装进一个 类加载器 中,它就像一个搬运工一样,会把所有的 .class 文件全部搬进JVM里面来。

img

方法区

方法区 是用于存放类似于元数据信息方面的数据的,比如类信息,常量,静态变量,编译后代码···等

类加载器将 .class 文件搬过来就是先丢到这一块上

主要放了一些存储的数据,比如对象实例,数组···等,它和方法区都同属于 线程共享区域 。也就是说它们都是 线程不安全

这是我们的代码运行空间。我们编写的每一个方法都会放到 里面运行。

我们会听说过 本地方法栈 或者 本地方法接口 这两个名词,不过我们基本不会涉及这两块的内容,它俩底层是使用C来进行工作的,和Java没有太大的关系。

本地方法栈

本地方法栈与 Java 虚拟机栈类似,它们之间的区别只不过是本地方法栈为本地方法服务。

本地方法一般是用其它语言(C、C++ 或汇编语言等)编写的,并且被编译为基于本机硬件和操作系统的程序,对待这些方法需要特别处理。


程序计数器

主要就是完成一个加载工作,类似于一个指针一样的,指向下一行我们需要执行的代码。和栈一样,都是 线程独享 的,就是说每一个线程都会有自己对应的一块区域而不会存在并发和多线程的问题。

img

小总结

  1. Java文件经过编译后变成 .class 字节码文件
  2. 字节码文件通过类加载器被搬运到 JVM 虚拟机中
  3. 虚拟机主要的5大块:方法区,堆都为线程共享区域,有线程安全问题,栈和本地方法栈和计数器都是独享区域,不存在线程安全问题,而 JVM 的调优主要就是围绕堆,栈两大块进行

例子

1
2
3
4
5
6
7
8
9
10
11
public class Student
{
public String name;
public Student(String name)
{
this.name=name;
}
public void sayName(){
System.out.println("student is name is "+name);
}
}
1
2
3
4
5
6
7
public class App{
public static void main(String[] args)
{
Student student = new Student("tellUrDream");
student.sayName();
}
}

执行main方法的步骤如下:

  1. 编译好 App.java 后得到 App.class 后,执行 App.class,系统会启动一个 JVM 进程,从 classpath 路径中找到一个名为 App.class 的二进制文件,将 App 的类信息加载到运行时数据区的方法区内,这个过程叫做 App 类的加载
  2. JVM 找到 App 的主程序入口,执行main方法
  3. 这个main中的第一条语句为 Student student = new Student(“tellUrDream”) ,就是让 JVM 创建一个Student对象,但是这个时候方法区中是没有 Student 类的信息的,所以 JVM 马上加载 Student 类,把 Student 类的信息放到方法区中
  4. 加载完 Student 类后,JVM 在堆中为一个新的 Student 实例分配内存,然后调用构造函数初始化 Student 实例,这个 Student 实例持有指向方法区中的 Student 类的类型信息 的引用
  5. 执行student.sayName();时,JVM 根据 student 的引用找到 student 对象,然后根据 student 对象持有的引用定位到方法区中 student 类的类型信息的方法表,获得 sayName() 的字节码地址。
  6. 执行sayName()

其实也不用管太多,只需要知道对象实例初始化时会去方法区中找类信息,完成后再到栈那里去运行方法。找方法就在方法表中找。

二、类加载器的介绍

之前也提到了它是负责加载.class文件的,它们在文件开头会有特定的文件标示,将class文件字节码内容加载到内存中,并将这些内容转换成方法区中的运行时数据结构,并且ClassLoader只负责class文件的加载,而是否能够运行则由 Execution Engine 来决定

类是在运行期间第一次使用时动态加载的,而不是一次性加载所有类。因为如果一次性加载,那么会占用很多的内存。

2.1 类加载器的流程

从类被加载到虚拟机内存中开始,到释放内存总共有7个步骤:加载,验证,准备,解析,初始化,使用,卸载。其中验证,准备,解析三个部分统称为连接


2.1.1 加载

  1. 加载是类加载的一个阶段,注意不要混淆。

    加载过程完成以下三件事:

    • 通过类的完全限定名称获取定义该类的二进制字节流。
    • 将该字节流表示的静态存储结构转换为方法区的运行时存储结构。
    • 在内存中生成一个代表该类的 Class 对象,作为方法区中该类各种数据的访问入口。

    其中二进制字节流可以从以下方式中获取:

    • 从 ZIP 包读取,成为 JAR、EAR、WAR 格式的基础。
    • 从网络中获取,最典型的应用是 Applet。
    • 运行时计算生成,例如动态代理技术,在 java.lang.reflect.Proxy 使用 ProxyGenerator.generateProxyClass 的代理类的二进制字节流。
    • 由其他文件生成,例如由 JSP 文件生成对应的 Class 类。

2.1.2 链接

  1. 验证:确保加载的类符合 JVM 规范和安全,保证被校验类的方法在运行时不会做出危害虚拟机的事件,其实就是一个安全检查
  2. 准备:为static变量方法区中分配内存空间,设置变量的初始值,例如 static int a = 3 (注意:准备阶段只设置类中的==静态变量(方法区中)==,不包括实==例变量(堆内存中)==,实例变量是对象初始化时赋值的)
  3. 解析:虚拟机将常量池内的符号引用替换为直接引用的过程(符号引用比如我现在import java.util.ArrayList这就算符号引用,直接引用就是指针或者对象地址,注意引用对象一定是在内存进行)

2.1.3 初始化

初始化其实就是执行类构造器方法的<clinit>()的过程,而且要保证执行前父类的<clinit>()方法执行完毕。这个方法由编译器收集,顺序执行所有类变量(static修饰的成员变量)显式初始化和静态代码块中语句。此时准备阶段时的那个 static int a 由默认初始化的0变成了显式初始化的3. 由于执行顺序缘故,初始化阶段类变量如果在静态代码块中又进行了更改,会覆盖类变量的显式初始化,最终值会为静态代码块中的赋值。

注意:字节码文件中初始化方法有两种,非静态资源初始化的<init>和静态资源初始化的<clinit>,类构造器方法<clinit>()不同于类的构造器,这些方法都是字节码文件中只能给JVM识别的特殊方法。

2.1.4 卸载

GC将无用对象从内存中卸载

2.2 类加载器分类和加载顺序

从 Java 虚拟机的角度来讲,只存在以下两种不同的类加载器:

  • 启动类加载器(Bootstrap ClassLoader),使用 C++ 实现,是虚拟机自身的一部分;

  • 所有其它类的加载器,使用 Java 实现,独立于虚拟机,继承自抽象类 java.lang.ClassLoader。

从 Java 开发人员的角度看,类加载器可以划分得更细致一些:

  • 启动类加载器(Bootstrap ClassLoader)此类加载器负责将存放在 <JRE_HOME>\lib 目录中的,或者被 -Xbootclasspath 参数所指定的路径中的,并且是虚拟机识别的(仅按照文件名识别,如 rt.jar,名字不符合的类库即使放在 lib 目录中也不会被加载)类库加载到虚拟机内存中。启动类加载器无法被 Java 程序直接引用,用户在编写自定义类加载器时,如果需要把加载请求委派给启动类加载器,直接使用 null 代替即可。

  • 扩展类加载器(Extension ClassLoader)这个类加载器是由 ExtClassLoader(sun.misc.Launcher$ExtClassLoader)实现的。它负责将 <JAVA_HOME>/lib/ext 或者被 java.ext.dir 系统变量所指定路径中的所有类库加载到内存中,开发者可以直接使用扩展类加载器。

  • 应用程序类加载器(Application ClassLoader)这个类加载器是由 AppClassLoader(sun.misc.Launcher$AppClassLoader)实现的。由于这个类加载器是 ClassLoader 中的 getSystemClassLoader() 方法的返回值,因此一般称为系统类加载器。它负责加载用户类路径(ClassPath)上所指定的类库,开发者可以直接使用这个类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

加载一个Class类的顺序也是有优先级的,类加载器从最底层开始往上的顺序是这样的

  1. BootStrap ClassLoader:rt.jar
  2. Extension ClassLoader: 加载扩展的jar包
  3. App ClassLoader:指定的classpath下面的jar包
  4. Custom ClassLoader:自定义的类加载器

2.3 双亲委派机制(重点)

双亲委派模式要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器,请注意双亲委派模式中的父子关系并非通常所说的类继承关系,而是采用组合关系来复用父类加载器的相关代码,类加载器间的关系如下:


当一个类收到了加载请求时,它是不会先自己去尝试加载的,而是委派给父类去完成,如果父类加载器还存在其父类加载器,则进一步向上委托,依次递归,请求最终将到达顶层的启动类加载器,如果父类加载器可以完成类加载任务,就成功返回,倘若父类加载器无法完成此加载任务,子加载器才会尝试自己去加载,这就是双亲委派模式。

比如我现在要new一个Person,这个Person是我们自定义的类,如果我们要加载它,就会先委派App ClassLoader,只有当父类加载器都反馈自己无法完成这个请求(也就是父类加载器都没有找到加载所需的Class)时,子类加载器才会自行尝试加载

双亲委派模式优势

  • 采用双亲委派模式的是好处是Java类随着它的类加载器一起具备了一种带有优先级的层次关系,通过这种层级关可以避免类的重复加载,当父亲已经加载了该类时,就没有必要子ClassLoader再加载一次。
  • 其次是考虑到安全因素,java核心api中定义类型不会被随意替换,假设通过网络传递一个名为java.lang.Integer的类,通过双亲委托模式传递到启动类加载器,而启动类加载器在核心Java API发现这个名字的类,发现该类已被加载,并不会重新加载网络传递的过来的java.lang.Integer,而直接返回已加载过的Integer.class,这样便可以防止核心API库被随意篡改

三、运行时数据区

3.1 本地方法栈和程序计数器

比如说我们现在点开Thread类的源码,会看到它的start0方法带有一个native关键字修饰,而且不存在方法体,这种用native修饰的方法就是本地方法,这是使用C来实现的,然后一般这些方法都会放到一个叫做本地方法栈的区域。

程序计数器其实就是一个指针,它指向了我们程序中下一句需要执行的指令,它也是内存区域中唯一一个不会出现OutOfMemoryError的区域,而且占用内存空间小到基本可以忽略不计。这个内存仅代表当前线程所执行的字节码的行号指示器,字节码解析器通过改变这个计数器的值选取下一条需要执行的字节码指令。

如果执行的是native方法,那这个指针就不工作了。

3.2 方法区

用于存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。当它存储的信息过大时,会在无法满足内存分配时报错。

和堆一样不需要连续的内存,并且可以动态扩展,动态扩展失败一样会抛出 OutOfMemoryError 异常。

对这块区域进行垃圾回收的主要目标是对常量池的回收和对类的卸载,但是一般比较难实现。

HotSpot 虚拟机把它当成永久代来进行垃圾回收。但很难确定永久代的大小,因为它受到很多因素影响,并且每次 Full GC 之后永久代的大小都会改变,所以经常会抛出 OutOfMemoryError 异常。为了更容易管理方法区,从 JDK 1.8 开始,移除永久代,并把方法区移至元空间,它位于本地内存中,而不是虚拟机内存中。

方法区是一个 JVM 规范,永久代与元空间都是其一种实现方式。在 JDK 1.8 之后,原来永久代的数据被分到了堆和元空间中。元空间存储类的元信息,静态变量和常量池等放入堆中。

3.2.1 运行时常量池

运行时常量池是方法区的一部分。

Class 文件中的常量池(编译器生成的字面量和符号引用)会在类加载后被放入这个区域。

除了在编译期生成的常量,还允许动态生成,例如 String 类的 intern()。

3.2.2 直接内存

在 JDK 1.4 中新引入了 NIO 类,它可以使用 Native 函数库直接分配堆外内存,然后通过 Java 堆里的 DirectByteBuffer 对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在堆内存和堆外内存来回拷贝数据。

3.3 虚拟机栈和虚拟机堆

一句话便是:栈管运行,堆管存储。则虚拟机栈负责运行代码,而虚拟机堆负责存储数据。

3.3.1 虚拟机栈的概念

它是Java方法执行的内存模型。里面会对局部变量,动态链表,方法出口,栈的操作(入栈和出栈)进行存储,且线程独享。同时如果我们听到局部变量表,那也是在说虚拟机栈

1
2
3
4
5
6
7
public class Person{
int a = 1;

public void doSomething(){
int b = 2;
}
}

3.3.2 虚拟机栈存在的异常

如果线程请求的栈的深度大于虚拟机栈的最大深度,就会报 StackOverflowError (这种错误经常出现在递归中)。Java虚拟机也可以动态扩展,但随着扩展会不断地申请内存,当无法申请足够内存时就会报错 OutOfMemoryError

3.3.3 虚拟机栈的生命周期

对于栈来说,不存在垃圾回收。只要程序运行结束,栈的空间自然就会释放了。栈的生命周期和所处的线程是一致的。

这里补充一句:8种基本类型的变量+对象的引用变量+实例方法都是在栈里面分配内存。

3.3.4 虚拟机栈的执行

每个 Java 方法在执行的同时会创建一个栈帧用于存储局部变量表、操作数栈、常量池引用等信息。从方法调用直至执行完成的过程,对应着一个栈帧在 Java 虚拟机栈中入栈和出栈的过程。


3.3.5 局部变量的复用

局部变量表用于存放方法参数和方法内部所定义的局部变量。它的容量是以Slot为最小单位,一个slot可以存放32位以内的数据类型。

虚拟机通过索引定位的方式使用局部变量表,范围为[0,局部变量表的slot的数量]。方法中的参数就会按一定顺序排列在这个局部变量表中,至于怎么排的我们可以先不关心。而为了节省栈帧空间,这些slot是可以复用的,当方法执行位置超过了某个变量,那么这个变量的slot可以被其它变量复用。当然如果需要复用,那我们的垃圾回收自然就不会去动这些内存。

3.3.6 虚拟机堆的概念

JVM内存会划分为堆内存和非堆内存,堆内存中也会划分为年轻代老年代,而非堆内存则为永久代。年轻代又会分为EdenSurvivor区。Survivor也会分为FromPlaceToPlace,toPlace的survivor区域是空的。Eden,FromPlace和ToPlace的默认占比为 8:1:1。该比例可以通过一个 -XX:+UsePSAdaptiveSurvivorSizePolicy 参数来根据生成对象的速率动态调整

image-20200324095521916

堆内存中存放的是对象,**垃圾收集就是收集这些对象然后交给GC算法进行回收。 **
非堆内存==方法区。
在1.8中已经移除永久代,替代品是一个元空间(MetaSpace),最大区别是metaSpace是不存在于JVM中的,它使用的是本地内存。并有两个参数

1
2
MetaspaceSize:初始化元空间大小,控制发生GC
MaxMetaspaceSize:限制元空间大小上限,防止占用过多物理内存。

移除的原因可以大致了解一下:融合HotSpot JVM和JRockit VM而做出的改变,因为JRockit是没有永久代的,不过这也间接性地解决了永久代的OOM问题。

3.3.7 Eden年轻代的介绍

当我们new一个对象后,会先放到Eden划分出来的一块作为存储空间的内存,但是我们知道对堆内存是线程共享的,所以有可能会出现两个对象共用一个内存的情况。这里JVM的处理是每个线程都会预先申请好一块连续的内存空间并规定了对象存放的位置,而如果空间不足会再申请多块内存空间。这个操作我们会称作TLAB。

当Eden空间满了之后,会触发一个叫做Minor GC(就是一个发生在年轻代的GC)的操作,存活下来的对象移动到Survivor0区。Survivor0区满后触发 Minor GC,就会将存活对象移动到Survivor1区,此时还会把from和to两个指针交换,这样保证了一段时间内总有一个survivor区为空且to所指向的survivor区为空。经过多次的 Minor GC后仍然存活的对象(这里的存活判断是15次,对应到虚拟机参数为 -XX:MaxTenuringThreshold 。为什么是15,因为HotSpot会在对象投中的标记字段里记录年龄,分配到的空间仅有4位,所以最多只能记录到15)会移动到老年代。老年代是存储长期存活的对象的,占满时就会触发我们最常听说的Full GC,期间会停止所有线程等待GC的完成。所以对于响应要求高的应用应该尽量去减少发生Full GC从而避免响应超时的问题。

而且当老年区执行了full gc之后仍然无法进行对象保存的操作,就会产生OOM,这时候就是虚拟机中的堆内存不足,原因可能会是堆内存设置的大小过小,这个可以通过参数-Xms、-Xmx来调整。也可能是代码中创建的对象大且多,而且它们一直在被引用从而长时间垃圾收集无法收集它们。

img

四、垃圾收集

4.1 如何判断一个对象需要被干掉

img

图中程序计数器、虚拟机栈、本地方法栈,3个区域随着线程的生存而生存的。内存分配和回收都是确定的。随着线程的结束内存自然就被回收了,因此不需要考虑垃圾回收的问题。而Java堆和方法区则不一样,各线程共享,内存的分配和回收都是动态的。因此垃圾收集器所关注的都是堆和方法这部分内存。

判断方法:

1.引用计数器计算:给对象添加一个引用计数器,每次引用这个对象时计数器加一,引用失效时减一,计数器等于0时就是不会再次使用的。不过这个方法有一种情况就是出现对象的循环引用时,引用计数器永远不为0,GC没法回收。

2.可达性分析计算:以 GC Roots 为起始点进行搜索,可达的对象都是存活的,不可达的对象可被回收。

(了解一下即可)在Java语言汇总能作为GC Roots的对象分为以下几种:

  1. 虚拟机栈(栈帧中的本地方法表)中引用的对象(局部变量)
  2. 方法区中静态变量所引用的对象(静态变量)
  3. 方法区中常量引用的对象
  4. 本地方法栈(即native修饰的方法)中JNI引用的对象(JNI是Java虚拟机调用对应的C函数的方式,通过JNI函数也可以创建新的Java对象。且JNI对于对象的局部引用或者全局引用都会把它们指向的对象都标记为不可回收)
  5. 已启动的且未终止的Java线程

这种方法的优点是能够解决循环引用的问题,可它的实现需要耗费大量资源和时间,也需要GC(它的分析过程引用关系不能发生变化,所以需要停止所有进程)

4.2 如何宣告一个对象的真正死亡

首先必须要提到的是一个名叫 finalize() 的方法

finalize()是Object类的一个方法、一个对象的finalize()方法只会被系统自动调用一次,经过finalize()方法逃脱死亡的对象,第二次不会再调用。

【不建议使用finalize方法】

判断一个对象的死亡至少需要两次标记

  1. 如果对象进行可达性分析之后没发现与GC Roots相连的引用链,那它将会第一次标记并且进行一次筛选。判断的条件是决定这个对象是否有必要执行finalize()方法。如果对象有必要执行finalize()方法,则被放入F-Queue队列中。
  2. GC对F-Queue队列中的对象进行二次标记。如果对象在finalize()方法中重新与引用链上的任何一个对象建立了关联,那么二次标记时则会将它移出“即将回收”集合。如果此时对象还没成功逃脱,那么只能被回收了。

如果确定对象已经死亡,我们又该如何回收这些垃圾呢

4.3 引用类型

无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象是否可达,判定对象是否可被回收都与引用有关。

Java 提供了四种强度不同的引用类型。

1. 强引用

被强引用关联的对象不会被回收。

使用 new 一个新对象的方式来创建强引用。

1
Object obj = new Object();

2. 软引用

被软引用关联的对象只有在内存不够的情况下才会被回收。

使用 SoftReference 类来创建软引用。

1
2
3
Object obj = new Object();
SoftReference<Object> sf = new SoftReference<Object>(obj);
obj = null; // 使对象只被软引用关联

3. 弱引用

被弱引用关联的对象一定会被回收,也就是说它只能存活到下一次垃圾回收发生之前。

使用 WeakReference 类来创建弱引用。

1
2
3
Object obj = new Object();
WeakReference<Object> wf = new WeakReference<Object>(obj);
obj = null;

4. 虚引用

又称为幽灵引用或者幻影引用,一个对象是否有虚引用的存在,不会对其生存时间造成影响,也无法通过虚引用得到一个对象。

为一个对象设置虚引用的唯一目的是能在这个对象被回收时收到一个系统通知。

使用 PhantomReference 来创建虚引用。

1
2
3
Object obj = new Object();
PhantomReference<Object> pf = new PhantomReference<Object>(obj, null);
obj = null;

4.4 垃圾回收算法

4.4.1 标记清除算法

在标记阶段,程序会检查每个对象是否为活动对象,如果是活动对象,则程序会在对象头部打上标记。

在清除阶段,会进行对象回收并取消标志位,另外,还会判断回收后的分块与前一个空闲分块是否连续,若连续,会合并这两个分块。回收对象就是把对象作为分块,连接到被称为 “空闲链表” 的单向链表,之后进行分配时只需要遍历这个空闲链表,就可以找到分块。

在分配时,程序会搜索空闲链表寻找空间大于等于新对象大小 size 的块 block。如果它找到的块等于 size,会直接返回这个分块;如果找到的块大于 size,会将块分割成大小为 size 与 (block - size) 的两部分,返回大小为 size 的分块,并把大小为 (block - size) 的块返回给空闲链表。

不足:

  • 标记和清除过程效率都不高;
  • 会产生大量不连续的内存碎片,导致无法给大对象分配内存。

img

此时可使用的内存块都是零零散散的,导致了刚刚提到的大内存对象问题

4.4.2 复制算法

将内存划分为大小相等的两块,每次只使用其中一块,当这一块内存用完了就将还存活的对象复制到另一块上面,然后再把使用过的内存空间进行一次清理。

主要不足是只使用了内存的一半。

img

现在的商业虚拟机都采用这种收集算法回收新生代,但是并不是划分为大小相等的两块,而是一块较大的 Eden 空间和两块较小的 Survivor 空间,每次使用 Eden 和其中一块 Survivor。在回收时,将 Eden 和 Survivor 中还存活着的对象全部复制到另一块 Survivor 上,最后清理 Eden 和使用过的那一块 Survivor。

HotSpot 虚拟机的 Eden 和 Survivor 大小比例默认为 8:1,保证了内存的利用率达到 90%。如果每次回收有多于 10% 的对象存活,那么一块 Survivor 就不够用了,此时需要依赖于老年代进行空间分配担保,也就是借用老年代的空间存储放不下的对象。

4.4.3 标记整理算法

复制算法在对象存活率高的时候会有一定的效率问题,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉边界以外的内存

优点:

  • 不会产生内存碎片

不足:

  • 需要移动大量对象,处理效率比较低。

img

4.4.4 分代收集算法

根据对象存活周期将内存划分为几块,不同块采用适当的收集算法。

一般将堆分为新生代和老年代。

  • 新生代使用:复制算法
    • 每次垃圾收集时都发现有大批对象死去,只有少量存活
  • 老年代使用:标记 - 清除 或者 标记 - 整理 算法
    • 因为对象存活率高、没有额外空间对它进行分配担保

4.5 方法区的回收

因为方法区主要存放永久代对象,而永久代对象的回收率比新生代低很多,所以在方法区上进行回收性价比不高。

主要是对常量池的回收和对类的卸载

为了避免内存溢出,在大量使用反射和动态代理的场景都需要虚拟机具备类卸载功能。

类的卸载条件很多,需要满足以下三个条件,并且满足了条件也不一定会被卸载:

  • 该类所有的实例都已经被回收,此时堆中不存在该类的任何实例。
  • 加载该类的 ClassLoader 已经被回收。
  • 该类对应的 Class 对象没有在任何地方被引用,也就无法在任何地方通过反射访问该类方法。

五、内存分配和回收策略

5.1 Minor GC 和 Full GC

  • Minor GC:回收新生代,因为新生代对象存活时间很短,因此 Minor GC 会频繁执行,执行的速度一般也会比较快。
  • Full GC:回收老年代和新生代,老年代对象其存活时间长,因此 Full GC 很少执行,执行速度会比 Minor GC 慢很多。

5.2 内存分配策略

5.2.1 对象优先在 Eden 分配

大多数情况下,对象在新生代 Eden 上分配,当 Eden 空间不够时,发起 Minor GC。

5.2.2 大对象直接进入老年代

大对象是指需要连续内存空间的对象,最典型的大对象是那种很长的字符串以及数组。

经常出现大对象会提前触发垃圾收集以获取足够的连续空间分配给大对象。

-XX:PretenureSizeThreshold,大于此值的对象直接在老年代分配,避免在 Eden 和 Survivor 之间的大量内存复制。

5.2.3 长期存活的对象进入老年代

为对象定义年龄计数器,对象在 Eden 出生并经过 Minor GC 依然存活,将移动到 Survivor 中,年龄就增加 1 岁,增加到一定年龄则移动到老年代中。

-XX:MaxTenuringThreshold 用来定义年龄的阈值。

5.2.4 动态对象年龄判定

虚拟机并不是永远要求对象的年龄必须达到 MaxTenuringThreshold 才能晋升老年代,如果在 Survivor 中相同年龄所有对象大小的总和大于 Survivor 空间的一半,则年龄大于或等于该年龄的对象可以直接进入老年代,无需等到 MaxTenuringThreshold 中要求的年龄。

5.2.5 空间分配担保

在发生 Minor GC 之前,虚拟机先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果条件成立的话,那么 Minor GC 可以确认是安全的。

如果不成立的话虚拟机会查看 HandlePromotionFailure 的值是否允许担保失败,如果允许那么就会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次 Minor GC;如果小于,或者 HandlePromotionFailure 的值不允许冒险,那么就要进行一次 Full GC。

5.3 Full GC 的触发条件

对于 Minor GC,其触发条件非常简单,当 Eden 空间满时,就将触发一次 Minor GC。而 Full GC 则相对复杂,有以下条件:

1. 调用 System.gc()

只是建议虚拟机执行 Full GC,但是虚拟机不一定真正去执行。不建议使用这种方式,而是让虚拟机管理内存。

2. 老年代空间不足

老年代空间不足的常见场景为前文所讲的大对象直接进入老年代、长期存活的对象进入老年代等。

为了避免以上原因引起的 Full GC,应当尽量不要创建过大的对象以及数组。除此之外,可以通过 -Xmn 虚拟机参数调大新生代的大小,让对象尽量在新生代被回收掉,不进入老年代。还可以通过 -XX:MaxTenuringThreshold 调大对象进入老年代的年龄,让对象在新生代多存活一段时间。

3. 空间分配担保失败

使用复制算法的 Minor GC 需要老年代的内存空间作担保,如果担保失败会执行一次 Full GC。具体内容请参考上面的第 5 小节。

4. JDK 1.7 及以前的永久代空间不足

在 JDK 1.7 及以前,HotSpot 虚拟机中的方法区是用永久代实现的,永久代中存放的为一些 Class 的信息、常量、静态变量等数据。

当系统中要加载的类、反射的类和调用的方法较多时,永久代可能会被占满,在未配置为采用 CMS GC 的情况下也会执行 Full GC。如果经过 Full GC 仍然回收不了,那么虚拟机会抛出 java.lang.OutOfMemoryError。

为避免以上原因引起的 Full GC,可采用的方法为增大永久代空间或转为使用 CMS GC。

5. Concurrent Mode Failure

执行 CMS GC 的过程中同时有对象要放入老年代,而此时老年代空间不足(可能是 GC 过程中浮动垃圾过多导致暂时性的空间不足),便会报 Concurrent Mode Failure 错误,并触发 Full GC。